1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
use std::any::Any;
use std::fmt;
use std::sync::{Arc, Mutex};
use std::sync::mpsc::Receiver;
use std::time::Instant;
use std::u8;
use analysis::{Evaluation, Evaluator, Extrapolatable};
use analysis::search::{Analysis, Search};
use state::State;
use self::history::History;
use self::ply_generator::PlyGenerator;
use self::transposition_table::{Bound, TranspositionTable, TranspositionTableEntry};
pub struct PvSearchAnalysis<S, E> where
S: State + Extrapolatable<<S as State>::Ply>,
E: Evaluator<State = S> {
pub state: S,
pub evaluation: <E as Evaluator>::Evaluation,
pub principal_variation: Vec<<S as State>::Ply>,
pub statistics: Statistics,
}
pub struct PvSearch<S, E> where
S: State + Extrapolatable<<S as State>::Ply>,
E: Evaluator<State = S> {
depth: u8,
goal: u16,
branching_factor: f32,
evaluator: E,
history: Arc<Mutex<History>>,
transposition_table: TranspositionTable<S, <E as Evaluator>::Evaluation>,
interrupted: bool,
}
impl<S, E> PvSearch<S, E> where
S: State + Extrapolatable<<S as State>::Ply>,
E: Evaluator<State = S> {
pub fn new(evaluator: E) -> PvSearch<S, E> {
PvSearch {
depth: 0,
goal: 0,
branching_factor: 0.0,
evaluator: evaluator,
history: Arc::new(Mutex::new(History::new())),
transposition_table: TranspositionTable::new(),
interrupted: false,
}
}
pub fn with_depth(evaluator: E, depth: u8) -> PvSearch<S, E> {
let mut search = PvSearch::new(evaluator);
search.depth = depth;
search
}
pub fn with_goal(evaluator: E, goal: u16, branching_factor: f32) -> PvSearch<S, E> {
let mut search = PvSearch::new(evaluator);
search.goal = goal;
search.branching_factor = if branching_factor <= 0.0 || branching_factor.is_nan() || branching_factor.is_infinite() {
1.0
} else {
branching_factor
};
search
}
fn minimax(
&mut self,
state: &mut S,
principal_variation: &mut Vec<<S as State>::Ply>,
depth: u8,
max_depth: u8,
mut alpha: <E as Evaluator>::Evaluation,
beta: <E as Evaluator>::Evaluation,
stats: &mut [StatisticsLevel],
interrupt: Option<&Receiver<()>>,
null_move_allowed: bool,
) -> <E as Evaluator>::Evaluation {
let search_iteration = (max_depth - depth) as usize;
if depth == 0 || state.check_resolution().is_some() {
if search_iteration > 0 {
stats[search_iteration - 1].evaluated += 1;
}
principal_variation.clear();
return self.evaluator.evaluate(state);
}
stats[search_iteration].visited += 1;
if let Some(entry) = self.transposition_table.get(state) {
stats[search_iteration].tt_hits += 1;
let mut usable = false;
if entry.depth >= depth &&
(entry.bound == Bound::Exact ||
(entry.bound == Bound::Upper && entry.value < alpha) ||
(entry.bound == Bound::Lower && entry.value >= beta)) {
usable = true;
}
if entry.bound == Bound::Exact && entry.value.is_end() {
usable = true;
}
if usable {
if state.execute_ply(Some(&entry.principal_variation[0])).is_ok() {
if let Err(error) = state.revert_ply(Some(&entry.principal_variation[0])) {
panic!("Error reverting state: {}", error);
}
stats[search_iteration].tt_saves += 1;
principal_variation.clear();
principal_variation.append(&mut entry.principal_variation.clone());
return entry.value;
}
}
}
if null_move_allowed &&
search_iteration > 0 && depth >= 3 &&
state.null_move_allowed() {
if state.execute_ply(None).is_ok() {
let mut scratch = Vec::new();
let eval = -self.minimax(
state, &mut scratch, depth - 3, max_depth,
-beta, (-beta).shift(1),
stats,
interrupt,
false,
);
if let Err(error) = state.revert_ply(None) {
panic!("Error reverting state: {}", error);
}
if eval >= beta {
return beta;
}
}
}
let ply_generator = PlyGenerator::new(
state,
principal_variation.first().cloned(),
self.history.clone(),
);
let mut next_principal_variation = if !principal_variation.is_empty() {
principal_variation[1..].to_vec()
} else {
Vec::new()
};
let mut first_iteration = true;
let mut raised_alpha = false;
for ply in ply_generator {
if state.execute_ply(Some(&ply)).is_err() {
continue;
}
let next_eval = if first_iteration {
-self.minimax(
state, &mut next_principal_variation, depth - 1, max_depth,
-beta, -alpha,
stats,
interrupt,
true,
)
} else {
let mut npv = next_principal_variation.clone();
let next_eval = -self.minimax(
state, &mut npv, depth - 1, max_depth,
(-alpha).shift(-1), -alpha,
stats,
interrupt,
true,
);
if next_eval > alpha && next_eval < beta {
-self.minimax(
state, &mut next_principal_variation, depth - 1, max_depth,
-beta, -alpha,
stats,
interrupt,
true,
)
} else {
next_principal_variation = npv;
next_eval
}
};
if let Err(error) = state.revert_ply(Some(&ply)) {
panic!("Error reverting state: {}\n{}\n{:?}", error, state, ply);
}
if next_eval > alpha {
alpha = next_eval;
raised_alpha = true;
principal_variation.clear();
principal_variation.push(ply.clone());
principal_variation.append(&mut next_principal_variation.clone());
if alpha >= beta {
{
let mut history = self.history.lock().unwrap();
let entry = history.entry(&ply).or_insert(0);
*entry += 1 << depth;
}
break;
}
}
first_iteration = false;
if self.is_interrupted(&interrupt) {
return alpha;
}
}
if let Some(ply) = principal_variation.first() {
if state.execute_ply(Some(ply)).is_ok() {
if let Err(error) = state.revert_ply(Some(ply)) {
panic!("Error reverting state: {}", error);
}
self.transposition_table.insert(state.clone(),
TranspositionTableEntry {
depth: depth,
value: alpha,
bound: if !raised_alpha {
Bound::Upper
} else if alpha >= beta {
Bound::Lower
} else {
Bound::Exact
},
principal_variation: principal_variation.clone(),
lifetime: 2,
}
);
stats[search_iteration].tt_stores += 1;
}
}
alpha
}
fn is_interrupted(&mut self, interrupt: &Option<&Receiver<()>>) -> bool {
if self.interrupted {
return true;
} else if let Some(interrupt) = *interrupt {
if let Ok(_) = interrupt.try_recv() {
self.interrupted = true;
return true;
}
}
false
}
}
impl<S, E> Search<S> for PvSearch<S, E> where
S: 'static + State + Extrapolatable<<S as State>::Ply>,
E: 'static + Evaluator<State = S> {
fn search(&mut self, state: &S, interrupt: Option<Receiver<()>>) -> Box<Analysis> {
let mut state = state.clone();
let mut eval = <E as Evaluator>::Evaluation::null();
let mut principal_variation = Vec::new();
let mut statistics = Vec::new();
let max_depth = if self.depth == 0 {
u8::MAX - 1
} else {
self.depth
};
let start_move = Instant::now();
self.history.lock().unwrap().clear();
self.interrupted = false;
let precalculated = match self.transposition_table.get(&state) {
Some(entry) => {
if entry.bound == Bound::Exact {
principal_variation.append(&mut entry.principal_variation.clone());
entry.depth
} else {
0
}
},
None => 0,
};
for depth in 1..precalculated + 1 {
statistics.push(vec![StatisticsLevel::new(); depth as usize]);
}
{
let mut forget = Vec::with_capacity(self.transposition_table.len() / 5);
for (key, entry) in self.transposition_table.iter_mut() {
if entry.lifetime > 0 {
entry.lifetime -= 1;
} else {
forget.push(key.clone());
}
}
for key in forget {
self.transposition_table.remove(&key);
}
}
for depth in 1..max_depth + 1 - precalculated {
let search_depth = depth + precalculated;
statistics.push(vec![StatisticsLevel::new(); search_depth as usize]);
let start_search = Instant::now();
eval = self.minimax(
&mut state,
&mut principal_variation,
search_depth, search_depth,
<E as Evaluator>::Evaluation::min(), <E as Evaluator>::Evaluation::max(),
&mut statistics.last_mut().unwrap(),
interrupt.as_ref(),
true,
);
let elapsed_search = start_search.elapsed();
let elapsed_search = elapsed_search.as_secs() as f32 + elapsed_search.subsec_nanos() as f32 / 1_000_000_000.0;
let elapsed_move = start_move.elapsed();
let elapsed_move = elapsed_move.as_secs() as f32 + elapsed_move.subsec_nanos() as f32 / 1_000_000_000.0;
statistics.last_mut().unwrap()[0].time = elapsed_search;
if self.is_interrupted(&interrupt.as_ref()) {
break;
}
let mut eval_state = state.clone();
if eval_state.execute_plies(&principal_variation).is_ok() {
if eval_state.check_resolution().is_some() {
break;
}
}
if self.goal != 0 && elapsed_move + elapsed_search * self.branching_factor > self.goal as f32 {
break;
}
}
Box::new(PvSearchAnalysis::<S, E> {
state: state.clone(),
evaluation: eval,
principal_variation: principal_variation,
statistics: Statistics {
depth: statistics,
},
})
}
}
impl<S, E> fmt::Display for PvSearchAnalysis<S, E> where
S: State + Extrapolatable<<S as State>::Ply>,
E: Evaluator<State = S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "State: {}\n", self.state));
let mut result = self.state.clone();
if result.execute_plies(&self.principal_variation).is_ok() {
try!(write!(f, "Resultant State: {}\n", result));
}
try!(write!(f, "Evaluation: {}{}", self.evaluation, if self.evaluation.is_end() {
if self.evaluation.is_win() {
" (Win)\n"
} else {
" (Lose)\n"
}
} else {
"\n"
}));
try!(write!(f, "Principal Variation:"));
for ply in &self.principal_variation {
try!(write!(f, "\n {}", ply));
}
try!(write!(f, "\nStatistics:\n{}", self.statistics));
Ok(())
}
}
impl<S, E> Analysis for PvSearchAnalysis<S, E> where
S: 'static + State + Extrapolatable<<S as State>::Ply>,
E: 'static + Evaluator<State = S> {
fn as_any(&self) -> &Any {
self
}
}
pub use self::statistics::{Statistics, StatisticsLevel};
mod history;
mod ply_generator;
mod statistics;
mod transposition_table;